Unifying the mechanism of recombinant FVIIa action: dose dependence is regulated differently by tissue factor and phospholipids.
نویسندگان
چکیده
Recombinant factor VIIa (rFVIIa) is used for treatment of hemophilia patients with inhibitors, as well for off-label treatment of severe bleeding in trauma and surgery. Effective bleeding control requires supraphysiological doses of rFVIIa, posing both high expense and uncertain thrombotic risk. Two major competing theories offer different explanations for the supraphysiological rFVIIa dosing requirement: (1) the need to overcome competition between FVIIa and FVII zymogen for tissue factor (TF) binding, and (2) a high-dose-requiring phospholipid-related pathway of FVIIa action. In the present study, we found experimental conditions in which both mechanisms contribute simultaneously and independently to rFVIIa-driven thrombin generation in FVII-deficient human plasma. From mathematical simulations of our model of FX activation, which were confirmed by thrombin-generation experiments, we conclude that the action of rFVIIa at pharmacologic doses is dominated by the TF-dependent pathway with a minor contribution from a phospholipid-dependent mechanism. We established a dose-response curve for rFVIIa that is useful to explain dosing strategies. In the present study, we present a pathway to reconcile the 2 major mechanisms of rFVIIa action, a necessary step to understanding future dose optimization and evaluation of new rFVIIa analogs currently under development.
منابع مشابه
THROMBOSIS AND HEMOSTASIS Unifying the mechanism of recombinant FVIIa action: dose dependence is regulated differently by tissue factor and phospholipids
Recombinant factor VIIa (rFVIIa) is used for treatment of hemophilia patients with inhibitors, as well for off-label treatment of severe bleeding in trauma and surgery. Effective bleeding control requires supraphysiological doses of rFVIIa, posing both high expense and uncertain thrombotic risk. Two major competing theories offer different explanations for the supraphysiological rFVIIa dosing r...
متن کاملFVIIa as used pharmacologically is not TF dependent in hemophilia B mice.
Activated factor VII is approved for treating hemophilia patients with autoantibodies to their factor IX or FVIII; however, its mechanism of action remains controversial. Some studies suggest that FVIIa requires tissue factor (TF) for function and that the reason for the high dose requirement is that it must compete with endogenous FVII for tissue factor. Others suggest that FVIIa binds platele...
متن کاملImproved hemostasis with superactive analogs of factor VIIa in a mouse model of hemophilia A.
It is currently debated whether the mechanism of action of therapeutic doses of recombinant factor VIIa (rFVIIa, Novo-Seven) relies on the tissue factor (TF)-independent activity of the enzyme. The present study was conducted to investigate the in vivo hemostatic effects of rFVIIa and 3 analogs thereof with superior intrinsic activity (FVIIaIIa, K337A-FVIIaIia, and M298Q-FVIIa) in mice with ant...
متن کاملP-240: Does Ciprofloxacin Exert Severe Oxidative Stress in Testicular Tissue?
Background: Ciprofloxacin was shown to have cytotoxic effects on testicular germ cells. Its mechanism of cytotoxic action is not fully understood. To investigate the possibility of the involvement of an oxidative stress induction in this mechanism, total antioxidant power (TAOP) in the testis was evaluated. Materials and Methods: A number of twenty four mature male NMRI mice were used.The anima...
متن کاملTissue factor/factor VIIa inhibitors block angiogenesis and tumor growth through a nonhemostatic mechanism.
An association between cancer and thrombosis has been recognized for more than a century. However, the manner by which tumor growth is regulated by coagulation in vivo remains unclear. To assess the role of coagulation on tumor growth, in vivo, we tested coagulation inhibitors specific for either tissue factor (TF)/factor VIIa (fVIIa) complexes or factor Xa (fXa) for antitumor activity. Here, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 120 4 شماره
صفحات -
تاریخ انتشار 2012